Climate change in cities

Can remote sensing help to optimise mitigation strategies?

Dr. Wieke Heldens, Dr. Thomas Esch & Dr. Hannes Taubenböck DLR-DFD, Department Land Surfaces Team Urban Areas and Land Management

Climate Change: General trend

Air temperature in Germany for the years 1881 – 2011 and predictions by climate simulations

```
— yearly mean temperature
— smoothed mean
```


Climate Change: Implications for cities

- The **awareness about climate change** and its possible consequences for urban areas is growing.
- Planning authorities want to **evaluate the climatic effects** of their planning activities:
 - maintain the livability of cities in the future, e.g.
 - create places with reduced temperatures
 - Facilitate corridors of fresh air
 - Adapted water management to cope with increasing rainfall

Urban Climate Analysis: Information needs

Information is required:

- on the possible **changes** of the climate
- on the **effect of changes in land use** (city structure, new buildings, parks, streets) on the local climate
- on possible mitigation strategies against negative climate impacts

Can remote sensing help to gather this information?

Urban Climate Analysis: Potential of remote sensing

- Area-wide
- Automated and objective mapping
- Regular updates

Isar and Deutsches Museum, Munich, Germany (airborne hyperspectral data, false color composite)

Remote Sensing				
Satellite data	thermal Data			
	(Landsat, ASTER,)			
	optical Data			
	(Landsat, Ikonos,)			
	Radar Data			
	(e.g. TerraSAR-X)			
Airborne data	thermal Data			
	(single band, multispectra)			
	optical Data			
	(hyperspectral data, aerial images, stereo data)			
	Lidar Data (accurate height models)			

Urban Climate Analysis: Relevant urban properties

Urban spatial	Climate surface parameters						
characteristics	Temperature	Wind speed	Humidity and precipitation	Air quality			
Building structure	•	•	•	•			
H/W ratio of street canyons	•	•		•			
Sky view factor	•						
Land cover	•	• • •					
Albedo	•						
Emissivity	•						
Thermal inertia	•						
Impervious area	•	• • •					
Vegetation fraction	•	•	•				
Surface water	•			•			
Land use	•		•	•			
Traffic density	•		•	•			
Industrial areas	•		•	•			

Overview of urban spatial characteristics that influence the main for climate surface parameters.

H/W ratio = height to with ratio

Urban Climate Analysis: Potential of remote sensing

- Measuring climate parameters
- Mapping surface characteristics related to urban climate
- Supporting climate modelling

Isar and Deutsches Museum, Munich, Germany (airborne hyperspectral data, false color composite)

- Surface temperature
- Albedo
- Radiation

Landsat

200 m

Remote Sensing: Mapping surface characteristics

- Building structure
- Land use / Land cover
- Impervious surface
- Vegetation density

- ..

Remote Sensing: Mapping surface characteristics

Remote Sensing: Mapping surface characteristics

Vegetation density per building block in Munich

Data source: Airborne hyperspectral data (HyMap)

- Basic spatial information:
 - Buildings
 - Object heights
 - Surface materials
 - Vegetation properties
 - ...

Applied urban micro climate model: ENVI-met, University of Mainz (<u>www.envi-met.com</u>)

100 m

Airborne hyperspectral data (4 m)

Height model (airborne stereo data)

Applied urban micro climate model: ENVI-met, University of Mainz (www.envi-met.com)

Leaf Area Index (LAI)

Albedo

Surface materials

Applied urban micro climate model: ENVI-met, University of Mainz (<u>www.envi-met.com</u>)

Roof and facade properties										
The second s	/4 ENVI-ME	T Walls database						@#54008E		1185
	ID Density	r[kg/m♥] Reflecti 39	on[%] Absorption	[%] Transmission	[%] Emissivity[%] 90	K-Value[W/(m*K)] Specific heat capacity[J/(kg 840	<pre>[*K)] Thickness[m] 0.05</pre>	Color in Editor Usage I	D Extra ID N
	rd 1700	31	69	0	90	0.81	840	0.05	255 1	0 i
	CT 2100	24	76	0	90	1.1	840	0.05	2187519 1	0 (
	Co 2100	25	75	0	90	1.28	840	0.05	2187519 0	0 (
	AL 2700	18	49	0	18	203	390	0.03	13158400 0	0 /
	lani	t drode	erties	ō	5	113	390	0.03	13158400 0	0 5
	1/3	ENVI-met Dat	abase Version 3		this file is onl	y usable with E	NVI-met V3.0 or higher			
	ID_C7_TY	rs-m_a_f_нн.нн	TT.TT_LAD1_LAD	2_LAD3_LAD4_LA	D5_LAD6_LAD7_	LAD8_LAD9_LAD	10_RAD1_RAD2_RAD3_RAD4_RAD5	RAD6RAD7RAD8	RAD9RAD10NAME	
	XX C3 03	200 0.20 00.63	00.50 0.300 0.3	00 0.300 0.300 0.	300 0.300 0.300	0.300 0.300 0.3	0 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Grass 50 cm	n aver. dense
1	so C3 03 1σ C3 03	70 0.20 00.63	1.200 1.580 0.8	20 0.380 0.290 0.	270 0.290 0.330	0.400 0.520 0.7	± 0 0.000 0.900 0.200 0.200 0.20	0 0.200 0.200 0.20	0 0.760 0.000 soja 90. so 0 0.100 0.100 luzerne 18	oja 63cm,
	MO C3 01	400 0.20 20.00	02.00 0.040 0.0	60 0.070 0.110 0.	130 0.150 0.140	0.130 0.100 0.0	0 0.100 0.100 0.100 0.100 0.100	0 0.100 0.100 0.10	0 0.100 0.100 Tree 20m a	ver. dense., no
	DO C3 01	400 0.20 20.00	02.00 0.110 0.1	40 0.180 0.270 0.	330 0.370 0.360	0.330 0.250 0.0	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 20 m	dense., no disti
	DM C3 01	400 0.20 20.00	02.00 0.075 0.0	75 0.075 0.075 0.	250 1.150 1.060	1.050 0.920 0.0	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 20 m	dense., distinct
	dm C3 01	400 0.20 20.00	02.00 0.075 0.0	75 0.075 0.075 0.	250 1.150 1.060	1.050 0.920 0.0	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 20 m	dense., distinct
	ds C3 01	400 0.20 10.00	02.00 0.075 0.0	75 0.075 0.075 0.	250 1.150 1.060	1.050 0.920 0.0	00 0.100 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 10 m (dense.,distinct
	sk C3 01	400 0.20 20.00	02.00 0.150 0.1	50 0.150 0.150 0. 50 0.150 0.150 0.	650 2.150 2.180	2.050 1.720 0.0	0.00000000000000000000000000000000000	0 0.100 0.100 0.10	0 0.100 0.100 Tree 15 m -	very dense, dist
	H2 C3 01	400 0.20 06.00	01.00 2.500 2.5	00 2.500 2.500 2.	500 2.500 2.500	2.300 2.200 1.5	0 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Hedge dens	e, 2m
	T1 C3 01	400 0.20 10.00	02.00 0.000 0.0	00 2.180 2.180 2.	180 2.180 2.180	2.180 1.720 0.0	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 10 m	very dense, leaf
ý na názo názo názo názo názo názo názo názo	gr C3 03	200 0.20 00.50	00.50 0.300 0.3	00 0.300 0.300 0.	300 0.300 0.300	0.300 0.300 0.3	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Grass 50 cm	n aver. dense
100 m	bs C3 01	400 0.20 20.00	02.00 0.000 0.0	00 0.005 0.075 0.	250 1.150 1.060	1.050 0.920 0.0	00 0.100 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 20 m (dense., distinct
	fo C3 01	400 0.20 20.00	02.00 0.000 0.00	40 0.180 0.180 0. 40 0.180 0.270 0.	330 0.370 0.360	2.050 1.720 0.0	0.0.100 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Forst 20 m	dense., no dist
	11 C3 01	400 0.20 15.00	02.00 0.040 0.0	60 0.070 0.110 0.	130 0.150 0.140	0.130 0.100 0.0	0 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree, ligh	t 15 m
I and Aven Index /I	12 C3 01	400 0.20 20.00	02.00 0.040 0.0	60 0.070 0.110 0.	130 0.150 0.140	0.130 0.100 0.0	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree, ligh	t 20 m
Leal Alea Muex (L	he C3 01	400 0.20 02.00	01.00 2.000 2.0	00 2.000 2.000 2.	000 2.000 2.000	2.000 2.000 2.0	0 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Hedge dens	e, 2m
	ma C4 03	200 0.20 01.50	00.50 0.300 0.3	00 0.300 0.300 0.	300 0.300 0.300	0.300 0.300 0.3	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Maize, 1.5	π
	gb C3 03	200 0.20 00.50	00.50 0.300 0.3	00 0.300 0.300 0.	300 0.300 0.300	0.300 0.300 0.3	00 0.100 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Grass 50 cm	1 aver. dense
	gZ C3 03	400 0.20 00.50	02.00 0.000 0.0		180 2.180 2.180	2.180 1.720 0.0	0.0.0.100 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Grass 50 C	s aver, dense,,, verv dense, lesf
	Tb C3 01	400 0.20 16.00	02.00 2.000 2.0	00 2.180 2.180 2.	180 2.180 2.180	2.180 1.720 0.0	0 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 15 m	verv dense
	ee C3 01	400 0.20 20.00	02.00 0.500 0.5	00 1.000 1.110 1.	130 1.500 1.800	2.000 1.500 0.8	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 20m a	ver. dense., no
	TH C3 01	400 0.20 15.00	02.00 0.000 0.0	00 0.000 0.000 0.	400 0.450 0.450	0.490 0.490 0.4	00 0.100 0.100 0.100 0.100 0.10	0 0.100 0.100 0.10	0 0.100 0.100 Tree 15m d	ense, distinct c

Applied urban micro climate model: ENVI-met, University of Mainz (<u>www.envi-met.com</u>)

3D input data set

Applied urban micro climate model: ENVI-met, University of Mainz (<u>www.envi-met.com</u>)

Applied urban micro climate model: ENVI-met, University of Mainz (<u>www.envi-met.com</u>)

Conclusions - Can remote sensing help to optimise mitigation strategies?

What **remote sensing cannot** provide:

- direct measurements of air temperature, precipitation, wind etc.

- measurement/simulation of the effect of the spatial changes on the local climate

What **remote sensing can** provide:

- Support of in situ measurements and simulations:
 - Time series of RS date since 1970 to learn from the past
 - Up-to-date basic spatial information for climate models

Conclusions - Can remote sensing help to optimise mitigation strategies?

Required information to which remote sensing can contribute:

- a) possible changes of the climate
 + surface temperature
 + albedo
- b) on the effect of changes in land use (city structure, new buildings, parks, streets) on the local climate
 - + mapping city structure (change)
 - + mapping land use/land cover change
- c) possible mitigation strategies for negative climate impacts
 - + identifying location where such strategies might be implemented

Thank you for your attention!

